FIVE TETRAHYDROISOQUINOLINE-MONOTERPENE GLUCOSIDES AND A TETRAHYDRO- $\beta-C A R B O L I N E-M O N O T E R P E N E$ GLUCOSIDE FROM ALANGIUM LAMARCKII ${ }^{1}$

Atsuko Itoh, Takao Tanahashi,* and Naotaka Nagakura

Kobe Pharmaceutical University, Higasbinada-ku, Kobe 658, Japan

Abstract

Reinvestigation of the fruits of Alangium lamarckii has led to the isolation and structural determination of five new tetrahydroisoquinoline-monoterpene glucosides, methylisoalangiside [5], isoalangiside [6], 3-0-demethyl-2-0-methylisoalangiside [7], demethylneoalangiside [8], and neoalangiside [9], as well as a novel tetrahydro- β-carbolinemonoterpene glucoside, 10 -hydroxyvincoside lactam [10]. Demethylalangiside, sweroside, and phenethyl alcohol xylopyranosyl $(1 \rightarrow 6)$ glucopyranoside were also isolated for the first time from this plant. The structures of the new compounds were elucidated by spectroscopic and chemical methods. The biogenesis of these glucosides is also discussed.

Alangium lamarckii Thwaites (Alangiaceae) is a deciduous shrub that is widely distributed throughout India and southeast Asia. The root bark of this plant finds extensive usage in folk medicine as an anthelmintic, purgative, emetic, and febrifuge, as well as in the treatment of leprosy and other skin diseases. Previous phytochemical studies on this plant focused mainly on its alkaloidal constituents, which include ipecac alkaloids, represented by emetine [1] and cephaeline $\{\mathbf{2}]$ (2). The glucosidal constituents, by contrast, remained to be examined except for alangiside [3] and loganic acid (3), although the alkaloids were shown to be biosynthesized via a glucosidal intermediate. In the course of our phytochemical studies on nitrogenous glycosides (4), we have recently investigated the constituents of the fruits of A. lamarckii and isolated 3-0-demethyl-2-0-methylalangiside [4] (5). Re-examination of the plant material was undertaken, since a preliminary study showed the presence of various nitrogenous glycosides. In this paper we describe the isolation and characterization of five new unusual tetrahydroisoquinoline-monoterpene glucosides and a tetrahydro- β-carbolinemonoterpene glucoside, and discuss the biogenesis of these compounds.

RESULTS AND DISCUSSION

Dried and crushed fruits of A. lamarckii were extracted with hot MeOH . The MeOH extract was successively partitioned between $\mathrm{H}_{2} \mathrm{O}$ and CHCl_{3} and between $\mathrm{H}_{2} \mathrm{O}$ and n BuOH . The n - BuOH -soluble fraction was fractionated by open-column chromatography on Si gel and reversed-phase mplc and then purified by reversed-phase hplc and prep. tlc, affording five novel tetrahydroisoquinoline-monoterpene glucosides [5-9] and a tetrahydro- β-carboline monoterpene glucoside $[\mathbf{1 0]}$, along with the known glycosides alangiside [3], 3-O-demethyl-2-0-methylalangiside [4], demethylalangiside [11] (4), sweroside (6), and phenethyl alcohol xylopyranosyl ($1 \rightarrow 6$) glucopyranoside (7). The latter three glycosides were isolated for the first time from this plant species.

Compound 5 was isolated as an amorphous powder, analyzed for $\mathrm{C}_{26} \mathrm{H}_{33} \mathrm{NO}_{10}$ from its hrsims. It showed uv maxima at 235, 282, and 292 (sh) nm, and ir bands at 3406 $(\mathrm{OH}), 1657(\mathrm{NCO}), 1589(\mathrm{Ar})$, and $1516\left(\mathrm{Ar)} \mathrm{~cm}^{-1}\right.$. Its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum (Table 1) indicated a structural similarity to methylalangiside [12] (5). However, when the ${ }^{1} \mathrm{H}$ nmr data of the new compound 5 were compared with those of $\mathbf{1 2}$, there were remarkable differences in the coupling constants between $\mathrm{H}_{2}-13$ and $\mathrm{H}-13 \mathrm{a}$ (5: $J_{13 \alpha, 132}=5.5 \mathrm{~Hz}$,

[^0]

$3 \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}$
$4 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{Me}$
$11 \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$12 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Me}$

$\begin{array}{ll}\mathbf{1 0} & \mathrm{R}=\mathrm{OH}, \mathrm{H}-3 \beta \\ \mathbf{2 1} & \mathrm{R}=\mathrm{OH}, \mathrm{H}-3 \alpha \\ \mathbf{2 2} & \mathrm{R}=\mathrm{H}, \mathrm{H}-3 \beta \\ \mathbf{2 3} & \mathrm{R}=\mathrm{H}, \mathrm{H}-3 \alpha\end{array}$

$8 \quad \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{H}$
$9 \mathrm{R}_{1}=\mathrm{Me}, \mathrm{R}_{2}=\mathrm{H}$
$19 \mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{Ac}$
$20 \mathrm{R}_{1}=\mathrm{H}, \mathrm{R}_{2}=\mathrm{OH}$
$26 \mathrm{R}_{1}=\mathrm{OH}, \mathrm{R}_{2}=\mathrm{H}$

Table 1. ${ }^{1} \mathrm{H}-\mathrm{Nm}$ Spectral Data of Compounds 3-9, 11, 12, and 15 in $\mathrm{CD}_{3} \mathrm{OD}(500 \mathrm{MHz})$.

Proton	Compound				
	3	4	5	6	7
$\mathrm{H}-1$	$6.690^{2} \mathrm{~s}$	6.78 s	6.83 s	6.72 s	6.80 s
H-3	--	-	-	.	
H-4	$6.693^{4} \mathrm{~s}$	6.57 s	6.74 s	6.71 s	6.59 s
H-5	$\begin{aligned} & 2.66 \mathrm{dt} \\ & (15.5,3.0) \end{aligned}$	$\begin{aligned} & 2.60 \mathrm{dt} \\ & (15.5,3.0) \end{aligned}$	2.70 m	$\begin{aligned} & 2.68 \text { ddd } \\ & (16.0,4.5,2.0) \end{aligned}$	$\begin{aligned} & 2.62 \text { ddd } \\ & (16.0,4.5,2.0) \end{aligned}$
H-5	$\begin{aligned} & 2.76 \text { ddd } \\ & (15.5,11.5,4.0) \end{aligned}$	$\begin{aligned} & 2.71 \text { ddd } \\ & (15.5,12.5,4.5) \end{aligned}$	$\begin{aligned} & 2.99 \mathrm{ddd} \\ & (15.5,11.5,5.5) \end{aligned}$	$\begin{aligned} & 2.96 \mathrm{ddd} \\ & (16.0,11.0,6.0) \end{aligned}$	$\begin{aligned} & 2.92 \text { ddd } \\ & (16.0,12.0,6.0) \end{aligned}$
H-6	$\begin{aligned} & 2.88 \mathrm{td} \\ & (11.5,3.0) \end{aligned}$	$\begin{aligned} & 2.84 \mathrm{rd} \\ & (12.5,3.0) \end{aligned}$	3.05 m	3.06 ddd ($12.5,11.0 .4 .5$)	$\begin{aligned} & 3.04 \text { rd } \\ & (12.0,4.5) \end{aligned}$
H-6	4.71 ddd $(11.5,4.0,3.0)$	$\begin{aligned} & 4.73 \mathrm{ddd} \\ & (12.5,4.5,3.0) \end{aligned}$	4.68 ddd (12.0, 5.5, 2.0)	4.64 ddd (12.5, 6.0, 2.0)	4.65 ddd $(12.0,6.0,2.0)$
H-9	$7.41 \mathrm{~d}(2.5)$	7.41 d (2.5)	7.33 d (2.5)	7.32 d (2.5)	7.33 d (2.5)
H-11	$5.49 \mathrm{~d}(1.5)$	5.49 d (1.5)	5.42 d (1.5)	5.41 d (1.5)	5.42 d (1.5)
H-12	$\begin{aligned} & 2,70 \text { ddd } \\ & \quad(10.0,5.5,1.5) \end{aligned}$	$\begin{aligned} & 2.71 \mathrm{ddd} \\ & (10.0,5.5,1.5) \end{aligned}$	2.70 m	$\begin{aligned} & 2.67 \text { ddd } \\ & (10.5,5.5,1.5) \end{aligned}$	$\begin{aligned} & 2.70 \text { ddd } \\ & (10.0,5.5,1.5) \end{aligned}$
H-12a	$\begin{aligned} & 3.19 \text { dddd } \\ & (13.0,5.5,3.5, \\ & 2.5) \end{aligned}$	$\begin{aligned} & 3.21 \text { dddd } \\ & \text { (13.0, 5.5, 3.5, } \\ & 2.5) \end{aligned}$	$\begin{aligned} & 2.85 \text { dddd } \\ & (12.5,5.5,4.5, \\ & 2.5) \end{aligned}$	$\begin{aligned} & 2.87 \text { dddd } \\ & \text { (13.0, 5.5, 4.5, } \\ & 2.5) \end{aligned}$	$\begin{aligned} & 2.87 \mathrm{dddd} \\ & (12.5,5.5,4.5, \\ & 2.5) \end{aligned}$
H-13	$1.35 \mathrm{rd}(13.0,11.0)$	$1.36 \mathrm{td}(13.0,11.5)$	$\begin{aligned} & 2.00 \text { ddd } \\ & (14.0,12.5,5.5) \end{aligned}$	$\begin{aligned} & 1.96 \text { ddd } \\ & (14.0,13.0,5.5) \end{aligned}$	$\begin{aligned} & 1.99 \mathrm{ddd} \\ & (14.0,12.5,5.0) \end{aligned}$
H-13	$2.30 \mathrm{dt}(13.0,3.5)$	$2.37 \mathrm{dt}(13.0,3.5)$	$\begin{aligned} & 2.46 \mathrm{ddd} \\ & (14.0,4.5,3.0) \end{aligned}$	$\begin{aligned} & 2.35 \text { ddd } \\ & (14.0,4.5,3.0) \end{aligned}$	$\begin{aligned} & 2.45 \mathrm{ddd} \\ & (14.0,4.5,3.0) \end{aligned}$
H-13a	$4.72 \mathrm{dd}(11.0,3.5)$	$4.76 \mathrm{dd}(11.5,3.5)$	4.78 br t (4.5)	4.72 brt (4.5)	$4.76 \mathrm{brt}(4.0)$
H-14	$5.52 \mathrm{dt}(17.0,10.0)$	$5.53 \mathrm{dt}(17.0,10.0)$	$5.67 \mathrm{dr}(17.0,10.0)$	$5.66 \mathrm{dr}(17.0,10.5)$	$5.67 \mathrm{dr}(17.0,10.0)$
H-15	$5.19 \mathrm{dd}(10.0,2.0)$	$5.19 \mathrm{dd}(10.0,2.0)$	$5.32 \mathrm{dd}(10.0,2.0)$	$5.31 \mathrm{dd}(10.5,2.0)$	$5.32 \mathrm{dd}(10.0,2.0)$
H-15,	$5.28 \mathrm{dd}(17.0,2.0)$	$5.28 \mathrm{dd}(17.0,2.0)$	$5.39 \mathrm{dd}(17.0,2.0)$	$5.38 \mathrm{dd}(17.0,2.0)$	$5.39 \mathrm{dd}(17.0,2.0)$
H-1,	4.69 d (8.0)	4.69 d (8.0)	4.61 d (8.0)	$4.61 \mathrm{~d}(8.0)$	$4.62 \mathrm{~d}(8.0)$
H-2'	$3.20 \mathrm{dd}(9.0,8.0)$	$3.19 \mathrm{dd}(9.0,8.0)$	$3.06 \mathrm{dd}(9.0,8.0)$	$3.06 \mathrm{dd}(9.0,8.0)$	3.06 dd (9.0, 8.0)
H-3',	3.38 t (9.0)	3.38 t (9.0)	$3.30 \pm(9.0)$	3.30 t (9.0)	3.29 t (9.0)
H-4'	3.29 dd (9.5, 9.0)	$3.28 \mathrm{dd}(9.5,9.0)$	3.23 t (9.0)	3.23 r (9.0)	$3.23 \mathrm{dd}(9.5,9.0)$
H-5'	3.32 ddd $(9.5,5.5,2.0)$	3.33 ddd $(9.5,5.5,2.0)$	$\begin{aligned} & 3.28 \mathrm{ddd} \\ & (9.0,6.0,2.0) \end{aligned}$	$\begin{aligned} & 3.28 \text { ddd } \\ & (9.0,5.5,2.0) \end{aligned}$	$3.28 \text { ddd }$
H-6'	$3.68 \mathrm{dd}(12.0,5.5)$	$3.67 \mathrm{dd}(12.0,5.5)$	$3.64 \mathrm{dd}(12.0,6.0)$	$3.65 \mathrm{dd}(12.0,5.5)$	3.65 dd (12.0, 5.5)
H-6	$3.90 \mathrm{dd}(12.0,2.0)$	$3.89 \mathrm{dd}(12.0,2.0)$	$3.87 \mathrm{dd}(12.0,2.0)$	3.87 dd (12.0, 2.0)	$3.87 \mathrm{dd}(12.0,2.0)$
OMe	3.83 s	3.82 s	3.80 s	3.82 s	3.85 s
OMe	-	-	3.83 s	-	-

Table 1. Continued.

Proton	Compound				
	8	9	11	12	15
H-1	-	-	$6.65{ }^{\text {b }}$ s	$6.82{ }^{\text {c }}$ s	6.68 s
H-3	6.65 d (8.0)	6.81 d (8.0)			
H-4	6.48 d (8.0)	6.61 d (8.0)	$6.55{ }^{\text {b }}$ s	$6.733^{\circ} \mathrm{s}$	6.55 s
H-5 ...	2.58-2.71 m	$2.61-2.73 \mathrm{~m}$	2.58 dt (15.5, 3.0)	2.68 de (15.0, 2.5)	$\begin{aligned} & 2.61 \mathrm{ddd} \\ & (16.0,5.0,2.5) \end{aligned}$
H-5 ...	2.58-2.71 m	$2.61-2.73 \mathrm{~m}$	2.70 m	$\begin{aligned} & 2.77 \text { ddd } \\ & (15.0,11.5,3.5) \end{aligned}$	2.86-2.94 m
H-6...	2.58-2.71 m	$2.61-2.73 \mathrm{~m}$	2.89 rd (12.5, 3.0)	2.84 cd (11.5, 2.5)	3.05 ddd $(13.0,11.5,5.0)$
H-6	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$	$4.64 \mathrm{de}(12.5,3.5)$	n.d. ${ }^{\text {d }}$	$\begin{aligned} & 4.61 \text { ddd } \\ & (13.0,6.5,2.5) \end{aligned}$
H-9	7.45 d (2.5)	7.45 d (2.5)	7.41 d (2.5)	7.42 d (2.5)	7.32 d (2.5)
H-11	5.50 d (1.5)	5.50 d (2.0)	5.49 d (1.5)	5.50 d (2.0)	5.41 d (1.5)
H-12	2.58-2.71 m	2.61-2.73 m	$\begin{aligned} & 2.70 \mathrm{ddd} \\ & (10.0,5.5,1.5) \end{aligned}$	$\begin{aligned} & 2.72 \text { ddd } \\ & (10.0,5.5,2.0) \end{aligned}$	$\begin{aligned} & 2.66 \mathrm{ddd} \\ & (10.0,5.5,1.5) \end{aligned}$
H-12a	3.24 m	3.24 m	3.19 m	$\begin{aligned} & 3.22 \text { dddd } \\ & (13.0,5.5,3.5, \\ & 2.5) \end{aligned}$	2.86-2.94 m
H-13	1.14 td (13.0, 11.0)	1.14 rd (13.0, 11.0)	$1.36 \mathrm{td}(13.0,11.5)$	1.36 td (13.0, 11.5)	$\begin{aligned} & 1.95 \mathrm{ddd} \\ & (14.0,12.5,5.5) \end{aligned}$
H-13...	$\begin{aligned} & 2.77 \mathrm{ddd} \\ & (13.0,3.5,2.0) \end{aligned}$	$\begin{aligned} & 2.76 \text { ddd } \\ & (13.0,4.0,2.5) \end{aligned}$	2.29 de (13.0, 3.5)	$2.39 \mathrm{dt}(13.0,3.5)$	$\begin{aligned} & 2.34 \text { ddd } \\ & (14.0,4.5,3.0) \end{aligned}$
H-13a	$4.98 \mathrm{dd}(11.0,2.0)$	$4.99 \mathrm{dd}(11.0,2.5)$	$4.70 \mathrm{dd}(11.5,3.5)$	${ }^{\text {n. }}$. ${ }^{\text {d }}$	4.70 brt (4.5)
H-14	$5.50 \mathrm{dr}(17.0,10.5)$	$5.50 \mathrm{de}(17.0,10.0)$	$5.52 \mathrm{dt}(17.0,10.0)$	$5.53 \mathrm{dtr}(18.0,10.0)$	$5.66 \mathrm{dt}(17.0,10.0)$
H-15	5.15 dd (10.5, 1.5)	$5.15 \mathrm{dd}(10.0,2.0)$	$5.19 \mathrm{dd}(10.0,2.0)$	$5.19 \mathrm{dd}(10.0,2.0)$	$5.31 \mathrm{dd}(10.0,2.0)$
H-15	$5.22 \mathrm{dd}(17.0,1.5)$	$5.22 \mathrm{dd}(17.0,2.0)$	$5.28 \mathrm{dd}(17.0,2.0)$	$5.29 \mathrm{dd}(18.0,2.0)$	$5.37 \mathrm{dd}(17.0,2.0)$
H-1'	4.71 d (7.5)	4.70 d (8.0)	4.69 d (8.0)	4.70 d (8.0)	4.61 d (8.0)
H-2'	3.23 dd (9.0, 7.5)	$3.22 \mathrm{dd}(9.0,8.0)$	$3.20 \mathrm{dd}(9.0,8.0)$	3.20 dd (9.0, 8.0)	3.06 dd (9.0, 8.0)
H-3',	3.39 e (9.0)	3.38 t (9.0)	3.39 t (9.0)	3.38 t (9.0)	
H-4'		n.d. ${ }^{\text {d }}$ d		$3.29 \mathrm{dd}(9.5,9.0)$	n.d. ${ }^{\text {d }}$ d
H-5'	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$	n.d. ${ }^{\text {d }}$	$\begin{aligned} & 3.33 \text { ddd } \\ & (9.5,5.5,2.0) \end{aligned}$	n.d. ${ }^{\text {d }}$
H-6'	3.69 dd (12.0, 5.5)	3.68 dd (12.0, 5.5)	3.68 dd (12.0, 5.5)	3.68 dd (12.0, 5.5)	$3.65 \mathrm{dd}(12.0,5.5)$
H-6'	3.90 dd (12.0, 1.5)	$3.90 \mathrm{dd}(12.0,2.0)$	$3.90 \mathrm{dd}(12.0,2.0)$	$3.90 \mathrm{dd}(12.0,2.0)$	$3.87 \mathrm{dd}(12.0,2.0)$
OMe	-	3.84 s	-	3.81 s	-
OMe	-	-	-	3.81 s	-

${ }^{-c}$ Values with the same superscript are interchangeable.
${ }^{d}$ Not determined.
$\left.J_{13 \beta, 13 \mathrm{a}}=3.0 \mathrm{~Hz} ; 12: J_{13 \alpha, 13 \mathrm{a}}=11.5 \mathrm{~Hz}, J_{13 \beta, 13 \mathrm{a}}=3.5 \mathrm{~Hz}\right)$, whereas $J_{11,12}(5: 1.5 \mathrm{~Hz} ; 12: 2.0$ $\mathrm{Hz})$ and $J_{12,12 \mathrm{a}}(5.5 \mathrm{~Hz})$ were nearly identical in both cases. Careful inspection of the coupling constants of all protons suggested that compound $\mathbf{5}$ is methylisoalangiside, with an S-configuration at C-13a, which has previously been prepared from secologanin [13] and 3-hydroxy-4-methoxyphenethylamine (3). The α - orientation of $\mathrm{H}-13 \mathrm{a}$ in 5 was also supported by NOESY experiments with 5 and its acetate 14 , where $n \mathrm{Oe}$ interactions were observed between $\mathrm{H}-1$ and $\mathrm{H}-13 \beta$ and between $\mathrm{H}-1$ and $\mathrm{H}-12 \mathrm{a}$, but not between $\mathrm{H}-12 \mathrm{a}$ and $\mathrm{H}-13 \mathrm{a}$ in contrast to alangiside $\{3\}$ which has an R-configuration at $\mathrm{C}-13$ a. Further evidence for the stereochemistry was provided by an alcoholic acetyl signal resonating at an anomalously high field ($\delta 1.57$) in the ${ }^{1} \mathrm{H}$-nmr spectrum of 14 . This could be explained by the ability of the acetates with an $\alpha-\mathrm{H}$ at $\mathrm{C}-13 \mathrm{a}$, such as methylisoalangiside tetraacetate, to adopt the conformation where the acetyl group lies over the plane of the aromatic system (8), and this suggestion was consistent with the observation that there were significant differences between 5 and $\mathbf{1 2}$ in the chemical shifts of $\mathrm{C}-6, \mathrm{C}-12 \mathrm{a}$, and $\mathrm{C}-13$ in the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra (Table 2). For final structural confirmation, methylisoalangiside and methylisoalangiside tetraacetate were prepared as follows. Secologanin [13] and dopamine were condensed in a buffer and subsequently lactamized under basic conditions to yield demethylalangiside [11] and demethylisoalangiside [15]. The latter, which was characterized as its acetate \{16\}, was subjected to methylation with $\mathrm{CH}_{2} \mathrm{~N}_{2} / \mathrm{Et}_{2} \mathrm{O}$ followed by acetylation. The synthetic compounds, methylisoalangiside and methylisoalangiside tetraacetate, were thus com-

Table 2. ${ }^{13} \mathrm{C}-\mathrm{Nmr}$ Spectral Data of Compounds 3-9, 11, 12, and 15 in $\mathrm{CD}_{3} \mathrm{OD}$.

Carbon	Compound									
	3^{1}	$4{ }^{2}$	5	6^{2}	7	$8{ }^{1}$	$9{ }^{2}$	11 ${ }^{1}$	12 ${ }^{4}$	$15^{\text {b }}$
C-1	$113 .{ }^{\text {c }}$	110.3	109.3	111.7	108.9	143.6	144.5	113.4	110.8	111.7
C-2	146.4	148.2	$149.2{ }^{\text {f }}$	146.2	147.9	144.4	147.4	145.3	149.4	$144.9{ }^{\text {m }}$
C-3	148.0	146.5	149.9	148.3	147.0	114.6	111.1	145.3	149.5	$145.6{ }^{\text {m }}$
C-4	112.6 ${ }^{\text {c }}$	116.1	114.1	113.6	117.1	120.3	120.2	116.0	113.2	117.0
C-4a	$127.3^{\text {d }}$	$128.9{ }^{\text {c }}$	$129.6{ }^{8}$	127.9	129.6	128.5	129.9	127.4	$128 . .^{\text {k }}$	127.9°
C-5	29.5	29.4	29.3	29.2	29.1	30.3	30.4	29.3	29.6	28.9
C-6	41.0	40.8	43.8	43.9	43.8	40.5	40.5	41.1	40.7	43.9
C-8	166.0	166.0	166.7	166.6	166.6	166.1	166.2	166.0	166.0	166.6
C-8a	109.3	109.3	109.4	109.4	109.4	109.5	109.5	109.3	109.2	109.4
C-9	148.8	148.8	148.8	148.8	148.8	148.9	149.0	148.7	148.9	148.7
C-11	97.5	97.6	98.2	98.2	98.2	97.5	97.6	97.5	97.6	98.1
C-12	44.5	44.5	44.8	44.9	44.8	44.5	44.6	44.5	44.5	44.9
C-12a	27.8	27.9	24.4	24.4	24.4	28.5	28.6	27.7	27.9	24.3
C-13	35.1	35.3	28.4	28.3	28.4	32.8	32.8	35.0	35.2	28.2
C-13a.	57.0	57.3	56.7	56.4	56.7	55.5	55.5	57.0	57.3	56.4
C-13b	$130.3{ }^{\text {d }}$	128.8 ${ }^{\text {e }}$	130.3^{8}	130.4	129.0	124.4	124.2	129.1	$130.1{ }^{\text {k }}$	$129.1{ }^{\circ}$
C-14	134.0	134.0	134.4	134.4	134.5	133.9	134.0	134.0	134.0	134.4
C-15	120.4	120.4	120.5	120.5	120.5	120.1	120.2	120.3	120.4	120.5
C-1	99.7	99.7	100.6	100.6	100.6	99.6	99.7	99.7	99.7	100.6
$\mathrm{C}-2{ }^{\prime}$	74.9	74.9	74.5	74.5	74.5	74.8	74.9	74.8	74.9	74.5
C-3'	78.0	78.1	$78.1{ }^{\text {b }}$	$78.1{ }^{\text {i }}$	78.1	78.0	78.0	78.0	78.1^{1}	$78.0{ }^{\circ}$
C-4'	71.6	71.6	71.5	71.5	71.5	71.6	71.6	71.6	71.6	71.4
C-5'	78.4	78.4	$78.3{ }^{\text {b }}$	$78.3{ }^{\text {i }}$	78.3	78.3	78.4	78.3	78.4	78.3°
C-6'	. 62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7	62.7
OMe	56.4	56.7	56.5	56.5	56.9	-	56.8	-	56.5	-
OMe	-	-	57.0	-	-	-	-	-	56.8	-

${ }^{\prime}$ Measured at 125 MHz .
${ }^{\text {b }}$ Measured at 75 MHz .
${ }^{c-0}$ Values with the same superscript are interchangeable.
pared with isolate 5 and its acetate 14, respectively. Accordingly, compound 5 was established as methylisoalangiside.

Glucosides 6 and 7 were also obtained as amorphous powders. The hrsims measurements of 6 and 7 revealed the same molecular formula $\left[\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{NO}_{10}\right]$ isomeric with alangiside [3] and 3-0-demethyl-2-0-methylalangiside [4]. The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectral features of 6 and 7 (Tables 1 and 2) were closely similar to those of methylisoalangiside [5], except for the absence of one aromatic methoxyl signal and the chemical shifts of the signals arising from the aromatic ring. The coupling constants between $\mathrm{H}_{2}-13$ and $\mathrm{H}-13 \mathrm{a}$, and the chemical shifts of $\mathrm{C}-6, \mathrm{C}-12 \mathrm{a}$, and $\mathrm{C}-13$ implied that both compounds should possess the same configuration at $\mathrm{C}-13 \mathrm{a}$ as 5 . These results suggested 6 and 7 were two possible demethylates of methylisoalangiside [5], i.e., C13 a epimers of $\mathbf{3}$ and $\mathbf{4}$. Further evidence of the α-disposition of $H-13$ a in 6 and 7 was provided by the ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectra of their acetates 17 and 18 , which exhibited characteristic aceryl signals at unusually high field (17: $\delta 1.64 ; 18: \delta 1.52$), and by the resemblance of the cd curves of 6 and 7 to those of methylisoalangiside [5]. The placement of the methoxy group at $\mathrm{C}-3$ in 6 and at $\mathrm{C}-2$ in 7 was deduced from the fact that the chemical shifts of ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{nmr}$ signals due to the aromatic moiery of 6 and 7 were in good accord with those of 3 and 4 , respectively (Tables 1 and 2). This was further corroborated by NOESY experiments with 6 and 7. The nOe interactions between $\mathrm{H}-13$ and $\mathrm{H}-1$ and between $\mathrm{H}-5$ and $\mathrm{H}-4$ allowed us to assign two aromatic proton signals to $\mathrm{H}-1$ and $\mathrm{H}-4$, respectively, in each glucoside. The methoxy signal showed a strong interaction with H-4 in 6 and with H-1 in 7, establishing the site of
the methoxyl group. Thus, structures 6 and 7 could unequivocally be assigned to isoalangiside and 3-0-demethyl-2-0-methylisoalangiside, respectively.

Compound $\mathbf{8}$ was recognized as an isomer of demethylalangiside [11], $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{10}$, from its mass spectrum. Its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectral features $[\mathrm{H}-9$ at $\delta 7.45$, a terminal vinyl at $\delta 5.15,5.22$, and 5.50] indicated its structural analogy to 11, although there were remarkable differences in the spectra, with the aromatic protons of $\mathbf{8}$ appearing as a pair of ortho-coupled doublets ($J=8.0 \mathrm{~Hz}$) at $\delta 6.48$ and 6.65 instead of two singlets as in 11. Acetylation of 8 afforded a hexaacetate 19 , whose ${ }^{1} \mathrm{H}-\mathrm{nmr}$ spectrum showed two phenolic acetyl signals but not the anomalous acetyl signal typical of the acetates with $13 a R$ configuration. These results, along with biogenetic considerations, suggested a structure for 8 with two phenolic hydroxyl groups at $\mathrm{C}-1$ and $\mathrm{C}-2$ in the same manner as for neoipecoside $\{20\}$, which we have isolated previously from Cephaelis ipecacuanha (4). This substitution pattern was confirmed by HMBC experiments with $\mathbf{8}$, which revealed $a^{3} J$ interaction between the signal at $\delta 6.48$ and $C-5(\delta 30.3)$, allowing us to assign the aromatic proton signal to $\mathrm{H}-4$, and thereby its coupled signal at $\delta 6.65$ to $\mathrm{H}-3$. Final absolute structural confirmation was obtained from the fact that 19 was identical with neoipecoside lactam hexaacetate derived from neoipecoside (4).

The ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$-nmr data (Tables 1 and 2) indicated that 9 has a structure similar to 8 but with an additional aromatic methoxyl group. Furthermore, its sims showed a quasi-molecular ion peak $[\mathrm{M}+\mathrm{H}]^{+}$at $m / z 506$, indicating an increase of 14 mass units in comparison with that of $\mathbf{8}$. These findings suggested that the new isolated compound should be a methylated derivative of $\mathbf{8}$. The substitution of the hydroxyl at $\mathrm{C}-1$ and methoxyl at C-2 was ascertained by a correlation between $\mathrm{H}-4(\delta 6.61)$ and $\mathrm{C}-5(\delta 30.4)$ in its HMBC spectrum and a cross-peak between $\mathrm{H}-3$ ($\delta 6.81$) and $\mathrm{OMe}(\delta 3.84$) in the NOESY spectrum. The absolute configuration of C-13a in 9 was determined to be the same as that of $\mathbf{8}$ i.e., R, based upon the following observations: (a) the coupling constants between $\mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}_{2}-13$ were nearly the same $[9: 11.0$ and $2.5 \mathrm{~Hz} ; 8: 11.0$ and 2.0 $\mathrm{Hz}]$, (b) an nOe interaction was observed between $\mathrm{H}-13 \mathrm{a}$ and $\mathrm{H}-12 \mathrm{a}$ in each glucoside, (c) the cd spectra of $\mathbf{8}$ and 9 exhibited a negative Cotton effect around 245 nm . Accordingly, the structure of isolate 9 was established as the $2-0$-methyl derivative of 8 and the glucosides $\mathbf{8}$ and 9 were designated as demethylneoalangiside and neoalangiside, respectively.

Compound 10 was obtained as an amorphous powder. Its hrsims indicated a molecular formula of $\mathrm{C}_{26} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{9}$ for 10. It showed uv maxima at 231.5, 277 (sh), and 311 (sh) nm, and ir bands at $3394(\mathrm{OH}), 1653(\mathrm{NCO})$ and $1577(\mathrm{Ar}) \mathrm{cm}^{-1}$. Its ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data suggested that the structure of $\mathbf{1 0}$ was analogous with demethylalangiside [11], but significant differences were noted for the aromatic proton signals, which appeared as an ABX system at $\delta 6.64(\mathrm{dd}, J=8.5$ and 2.5 Hz$), 6.80(\mathrm{~d}, J=2.5 \mathrm{~Hz})$, and $7.12(\mathrm{~d}, J=8.5$ Hz). The ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum showed eight aromatic carbon signals ($\delta 151.5 \mathrm{C}, 135.4 \mathrm{C}$, $133.2 \mathrm{C}, 128.7 \mathrm{C}, 112.5 \mathrm{CH}, 112.3 \mathrm{CH}, 108.5 \mathrm{C}, 103.4 \mathrm{CH}$). These features, together with its molecular formula and uv spectrum, indicated the presence of a hydroxy-indole ring in $\mathbf{1 0}$ instead of a dihydroxy-benzene ring as in $\mathbf{1 1}$. This was also supported by analysis of the sims spectrum of $\mathbf{1 0}$, which showed fragment peaks at $m / z 353$ and 187 (9,10). As a result of an HMBC experiment on 10, where an interaction between $\mathrm{H}-9$ ($\delta 6.80$) and C-7 ($\delta 108.5$) was seen, it was predicted that the hydroxyl group was located at $\mathrm{C}-10$ on the indole ring. This argument received further support from the agreement of the aromatic carbon signals in the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra of $\mathbf{1 0}$ with the corresponding signals of 10 -hydroxystrictosidine lactam [21] (9). A remaining point of possible ambiguity was the absolute configuration at $\mathrm{C}-3$. To establish the stereochemistry of this asymmetric center, the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectrum of $\mathbf{1 0}$ was compared with those of vincoside

Tabie 3. ${ }^{13} \mathrm{C}$-Nmr Spectral Data of Compounds $\mathbf{1 0}$ and 21-23 in $\mathrm{CD}_{3} \mathrm{OD}$.

Carbon	Compound			
	$10^{\text {a }}$	$21^{\text {b }}$	$22^{\text {b }}$	$23^{\text {b }}$
C-2	135.4	135.6	134.6	134.8
C-3	54.9	55.1	54.9	55.1
C-5	41.3	44.8	41.3	44.7
C-6	22.1	22.1	22.1	22.1
C-7	108.5	$109.6{ }^{\text {c }}$	$109.3{ }^{\text {e }}$	110.3
C-8	128.7	129.4	128.0	128.7
C-9	103.4	103.2	118.9	118.7
C-10	151.5	151.5	120.0	120.2
C-11	112.3	$112.8{ }^{\text {d }}$	122.6	122.5
C-12	112.5	$112.3^{\text {d }}$	112.0	112.3
C-13	133.2	132.5	138.3	137.8
C-14	32.7	27.2	32.7	27.3
C-15	27.4	24.9	27.4	24.9
C-16	109.4	$109.2{ }^{\text {c }}$	$109.1{ }^{\circ}$	109.2
C-17	149.0	149.1	149.1	149.1
C-18	120.5	120.6	120.5	120.6
C-19	134.0	134.3	134.0	134.3
C-20	44.6	44.7	44.6	44.7
C-21	97.5	98.1	97.4	98.1
C-22	166.1	167.0	166.1	167.1
C-1'	99.7	100.5	99.6	100.5
C-2'	74.9	74.3	74.9	74.3
C-3'	78.0	78.2	78.4	78.2
C-4'	71.6	71.3	71.6	71.4
C-5'	78.4	77.9	78.0	78.0
C-6'	62.7	62.6	62.7	62.6

${ }^{2}$ Measured at 125 MHz .
${ }^{\text {b }}$ Data taken from Ref. (9). Measured at 75 MHz .
${ }^{c-}$ Values with the same superscript are interchangeable.
lactam [22] and strictosidine lactam [23](9). There were significant differences between 10 and 23 in the chemical shifts of $\mathrm{C}-5, \mathrm{C}-14$, and $\mathrm{C}-15$ in the ${ }^{13} \mathrm{C}-\mathrm{nmr}$ spectra (Table 3), while these same signals of $\mathbf{1 0}$ and $\mathbf{2 2}$ resonated at nearly identical frequencies. The cd spectrum of $\mathbf{1 0}$ showed a negative Cotton effect at 271 nm , indicating the R configuration at $\mathrm{C}-3$ (11). Thus, compound $\mathbf{1 0}$ was elucidated as 10 -hydroxyvincoside lactam.

The occurrence of the glucosides 5-7 gives important information about the biosynthesis of ipecac alkaloids represented by emetine 〔1\} and cephaeline \{2]. Previous biosynthetic investigations (12) demonstrated that secologanin $\{\mathbf{1 3}]$ is condensed with dopamine in a Pictet-Spengler manner to form two epimers, deacetylisoipecoside [24] and deacetylipecoside [25]. Deacetylisoipecoside [24] was exclusively transformed to the ipecac alkaloids without change of configuration. Deacetylipecoside $[\mathbf{2 5]}$ is not an intermediate for the alkaloids but is acetylated in Cephaelis ipecacuanba to give ipecoside [26], or is transformed in A. lamarckii to alangiside [3]. However, all of the tetrahydroisoquinoline-monoterpene glucosides isolated so far have had a $\beta-\mathrm{H}$ at the chiral center, but no glucoside with an $\alpha-\mathrm{H}$ such as $5-7$ has been isolated from natural sources. This is the first instance of the isolation of glucosides with the same stereochemistry as ipecac alkaloids, and it strongly supports the intermediacy of deacetylisoipecoside [24] in the biosynthetic pathway to ipecac alkaloids and their related compounds (Scheme 1). The intermediate 24 could be furcher transformed, most likely via 27, to

SCheme 1. Proposed biosynthetic sequence for the biosynthesis of the alkaloids and nitrogenous glucosides in Alangium lamarckii.
alkaloids such as $\mathbf{1 , 2}$, and tubulosine [28] or cyclized to demethylisoalangiside [15]. The new glucosides with an unusually cyclized isoquinoline nucleus, demethylneoalangiside [8] and neoalangiside [9], are obviously biosynthesized via deacerylneoipecoside [29], which was previously postulated as a precursor for neoipecoside [20] (4). It could therefore be assumed that three different types of condensation of dopamine and secologanin [13] could take place in Alangium plants in the same way as in C. ipecacuanba. It is also noteworthy that all of the isolated compounds possess a lactam ring. No glucoside with an N-acyl group like ipecoside has been found in Alangium, although some glucosides with an 0 -acyl group in the glucose moiety were isolated (13). We suppose therefore that N -acylation is not involved in this group of plants. The glucosides 5-9 may be derived from deacerylisoipecoside or deacetylneoipecoside through lactamization and subsequent 0 -methylation as in the case of alangiside and 30 -demethyl-2-O-methylalangiside. However, we could not rule out an alternative plausible pathway to 5-7, where deacerylisoipecoside is methylated prior to lactamization (Scheme 2). If 2-0- and 3-0-methylated deacetylisoipecosides could be further deglucosylated, recyclized and reduced, we could reasonably account for the co-

SCHEME 2. An alternative biosynthetic sequence for the glucosides 5-7 and demethylprotoemetinols.
occurrence of demethylprotoemetinols in this plant (14). Therefore, the possibility should be taken into account that the methylation of a phenolic hydroxyl group takes place at the glucoside level in the biosynthetic sequence for ipecac alkaloids. It is also interesting that 10 -hydroxyvincoside lactam was isolated. This constitutes the first isolation of a tetrahydro- β-carboline monoterpene glucoside from A. lamarckii, which could be biosynthesized through condensation of secologanin with tryptamine (or serotonin) instead of with dopamine.

EXPERIMENTAL

General experimental procedures.-Mps were recorded on a Büchi melting point apparatus and are reported uncorrected. Uv spectra were recorded on a Shimadzu UV- 240 spectrophotometer and ir spectra on a Shimadzu Ftir-8200 or a Hitachi 270-30 infrared spectrophotometer. Optical rotations were measured on a Jasco DIP-370 digital polarimeter. Ms and hrms were obtained with a Hitachi M- 4100 mass spectrometer. For sims, glycerol was used as the matrix. The nmr experiments were performed with Varian VXR-500, Varian Gemini-300, and Varian Gemini-200 spectrometers, with TMS as internal standard. Hplc was performed using a Waters system (600 E multisolvent delivery system, 486 tunable absorbance detector). Cc was carried out with Si gel 60(70-230 mesh, Nacalai Tesque). Tle was performed on precoated Kieselgel $60 \mathrm{~F}_{254}$ plates (Merck) and spots were visualized under uv light.

Plant material.-The dried fruits of Alangium lamarckii, collected in India, were purchased from Mikuni, Osaka, Japan. A voucher specimen (KPFY-921) is deposited in our laboratory.

EXIRACTION AND ISOLATION.-Dried fruits (4.5 kg) of A. lamarckii were crushed and extracted with hot MeOH . The MeOH extracts were concentrated in vacuo and the resulting residue (854.7 g) was suspended in $\mathrm{H}_{2} \mathrm{O}$ and extracted successively with CHCl_{3} and n - BuOH . A part (71.7 g) of the residue (159.2 g) from the $n-\mathrm{BuOH}$ layers was chromatographed on a Si gel column. Elution with $\mathrm{CHCl}_{3} / \mathrm{MeOH}$ mixtures of the indicated MeOH content gave 11 fractions, $1(7-10 \%, 2.27 \mathrm{~g}), 2(10 \%, 17.47 \mathrm{~g}), 3(10 \%, 14.00 \mathrm{~g})$, $4(10 \%, 1.89 \mathrm{~g}), 5(12 \%, 2.04 \mathrm{~g}), 6(12 \%, 2.67 \mathrm{~g}), 7(12 \%, 1.98 \mathrm{~g}), 8(15 \%, 4.85 \mathrm{~g}), 9(15 \%, 4.08 \mathrm{~g}), 10$ $(15 \%, 3.45 \mathrm{~g}), 11(20-30 \%, 2.92 \mathrm{~g})$. Fraction 1 was submitted to reversed-phase mplc and elution with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(35: 65-40: 60)$ and $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(40: 60)$ gave fraction $1 / \mathrm{a}(66.9 \mathrm{mg})$ and fraction $1 / \mathrm{b}$ (162.9 mg), respectively. Fraction $1 / \mathrm{a}$ was purified by prep. hplc (μ Bondasphere $5 \mu \mathrm{~m} \mathrm{C}_{18}-100 \AA, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}$, $1: 1)$, affording $\mathbf{A}(7.0 \mathrm{mg}), \mathbf{B}(5.6 \mathrm{mg}), 5(3.1 \mathrm{mg})$, and $\mathbf{C}(12.9 \mathrm{mg})$. Fraction $1 / \mathrm{b}$ was also purified by prep. hplc (MeOH- $\mathrm{H}_{2} \mathrm{O}, 1: 1$) to yield $5(8.7 \mathrm{mg}), \mathbf{C}(70.4 \mathrm{mg})$, and $\mathbf{D}(25.0 \mathrm{mg})$. Fraction 2 was rechromatographed on a Si gel column and an eluate from $\mathrm{CHCl}_{3}-\mathrm{MeOH}(93: 7)$ was further purified by prep. tlc $\left(\mathrm{CHCl}_{3}-\mathrm{MeOH}\right.$, 3:1, and $\mathrm{EtOAc}-\mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOH}, 4: 1: 1.2$) and by prep. hplc (μ Bondasphere $5 \mu \mathrm{mC}_{18}-100 \AA, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 1: 1$) to afford $9(5.3 \mathrm{mg})$. In the same way, the following fractions were purified by a combination of Si gel cc with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(92: 8-85: 15)$, prep. tle with $\mathrm{CHCl}_{3}-\mathrm{MeOH}(4: 1$ or $3: 1)$ or $\mathrm{ErOAc}_{6} \mathrm{C}_{6} \mathrm{H}_{6}-\mathrm{EtOH}(4: 1: 1)$, reversed-phase mplc with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(25: 75-40: 60)$ and prep. hplc with $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(40: 60-55: 45)$. Fraction 3 yielded sweroside (78.5 mg), $\mathbf{E}(173.1 \mathrm{mg}), \mathbf{F}(31.1 \mathrm{mg}), \mathbf{G}(19.7 \mathrm{mg}), \mathbf{4}(1.02 \mathrm{~g}), \mathbf{3}(6.80 \mathrm{~g})$, $\mathbf{H}(97.9 \mathrm{mg}), \mathbf{I}(24.3 \mathrm{mg}), \mathbf{6}(28.1 \mathrm{mg}), 7(11.1 \mathrm{mg})$; fraction $4: \mathbf{4}(50.2 \mathrm{mg}), \mathbf{3}(268.4 \mathrm{mg}), \mathbf{I}(3.0 \mathrm{mg}), 6$ (5.1 mg); fraction $5: \mathbf{1 1}(96.2 \mathrm{mg}), \mathbf{8}(68.4 \mathrm{mg}), \mathbf{E}(1.3 \mathrm{mg}), \mathbf{4}(25.8 \mathrm{mg}), \mathbf{3}(202.3 \mathrm{mg}), \mathbf{I}(1.9 \mathrm{mg})$; fraction 6: phenethyl alcohol xylopyranosyl $(1 \rightarrow 6)$ glucopyranoside (32.0 mg), $\mathbf{1 1}(427.4 \mathrm{mg}), \mathbf{1 0}(2.3 \mathrm{mg}), \mathbf{8}(51.2$ $\mathrm{mg}), \boldsymbol{4}(14.6 \mathrm{mg}), \mathbf{3}(121.1 \mathrm{mg})$; fraction $7: \mathbf{1 1}(288.1 \mathrm{mg}), \mathbf{1 0}(13.5 \mathrm{mg}), \mathbf{3}(105.9 \mathrm{mg})$. Compounds $\mathbf{A}-$ I were unidentified glucosides, which will be subjected to further investigation.

Methylisoalangiside [5].-Colorless amorphous powder, $[\alpha]^{25} \mathrm{D}-141^{\circ}(c=0.28, \mathrm{MeOH})$; uv (MeOH) $\lambda \max (\log \epsilon) 235(4.31), 282(3.65), 292(\mathrm{sh}, 3.52) \mathrm{nm} ; \mathrm{ir}(\mathrm{KBr}) \nu \max 3406,1657,1589,1516,899 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$-nmr data, see Table $1 ;{ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Table 2; sims $m / z[\mathrm{M}+\mathrm{Na}]^{+} 542,[\mathrm{M}+\mathrm{H}]{ }^{+} 520,358,192$; hrsims $m / z\left[\mathrm{M}+\mathrm{H}^{+} \quad 520.2179\right.$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{34} \mathrm{NO}_{10}, 520.2184$); cd (MeOH) $\Delta \epsilon-8.65(224),+1.46$ (242), $-0.18(255),+0.12(274) \mathrm{nm}$.

Isoalangiside [6].-Colorless amorphous powder, $[\alpha]^{25} \mathrm{D}-118^{\circ}(c=0.86, \mathrm{MeOH})$; uv (MeOH) λ max (log $\epsilon) 233(4.26), 284.5$ (3.64) nm; ir (KBr) $v \max 3400,1660,1592,1516,900 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}$ data, see Table $1 ;{ }^{13} \mathrm{C}$-nmr data, see Table 2 ; sims $m / z[\mathrm{M}+\mathrm{Na}]^{+} 528,[\mathrm{M}+\mathrm{H}]^{+} 506,344,178$; hrsims $m / z[\mathrm{M}+\mathrm{H}]^{-}$ 506.2023 (calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{10}, 506.2027$); cd (MeOH) $\Delta \epsilon-5.62$ (224), +1.33 (240), 0.68 (254), $+0.49(280) \mathrm{nm}$.

3-O-Demethyl-2-O-metbylisaalangiside [7].-Colorless amorphous powder, $[\alpha]^{28} \mathrm{D}-169^{\circ}(c=0.45$, $\mathrm{MeOH}) ; \mathrm{uv}(\mathrm{MeOH}) \lambda \max (\log \epsilon) 234(4.25), 284$ (3.61) nm; ir (KBr) $v \max 3400,1653,1578,1516,901$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}-\mathrm{nmr}$ data, see Table $1 ;{ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Table 2; hrsims $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{H}]^{+} 506.2024$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{10}, 506.2027$); $\mathrm{cd}(\mathrm{MeOH}) \Delta \epsilon-9.93(225),+0.30(243),-1.00(254),-0.65(283) \mathrm{nm}$.

Demethylneaalangiside [8].-Colorless crystals ($\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$): mp 193-195 ${ }^{\circ}$; $[\alpha]^{28} \mathrm{D}-9.8^{\circ}(c=1.0$, MeOH); uv (MeOH) $\lambda \max (\log \epsilon) 231(\mathrm{sh}, 4.24), 238.5$ (4.25), 287 (sh, 3.37) nm ; ir (KBr) v max 3416 , $1654,1570,1506,882 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$-nmr data, see Table 1 ; ${ }^{13} \mathrm{C}$-nmr data, see Table 2 ; sims $m / z[\mathrm{M}+\mathrm{Na}]^{+} 514$, $\left[\mathrm{M}+\mathrm{H}^{+} 492,330 ;\right.$ hrsims $\mathrm{m} / \mathrm{z}[\mathrm{M}+\mathrm{Na}]^{+} 514.1697$ (calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{NO}_{10} \mathrm{Na}, 514.1690$); $[\mathrm{M}+\mathrm{H}]^{+}$ 492.1882 (calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{10}, 492.1871$); cd (MeOH) $\Delta \epsilon-11.65$ (243), +2.96 (283) nm.

Neaclangiside [9].-Colorless amorphous powder, $[\alpha]^{23} \mathrm{D}+7.7^{\circ}(c=0.25, \mathrm{MeOH})$; uv (MeOH) λ max (\log €) $230(\mathrm{sh}, 4.27), 234(4.27), 286(\mathrm{sh}, 3.38) \mathrm{nm}$; ir (KBr) $\nu \max 3405,1653,1558,1508,881 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}-\mathrm{nmr}$ data, see Table 1 ; ${ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Table 2; sims $m / z[\mathrm{M}+\mathrm{Na}]^{+} 528,[\mathrm{M}+\mathrm{H}]^{+} 506,344,178$; hrsims $m / z[\mathrm{M}+\mathrm{H}]^{+} 506.2021$ (calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{NO}_{10}, 506.2027$); cd (MeOH) $\Delta \epsilon-11.23$ (245), +3.13 (282) nm.

10-Hydroxyvincoside lactam [10].-Coloriess amorphous powder, $[\alpha]^{24} \mathrm{D}-120^{\circ}(c=0.79, \mathrm{MeOH})$; uv (MeOH) $\lambda \max (\log \epsilon) 231.5$ (4.43), 277 (sh, 3.98), 311 (sh, 3.43) nm; ir (KBr) $\nu \max 3394,1653,1577$, $1456,905 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CD}_{3} \mathrm{OD}\right) \delta 1.44(1 \mathrm{H}, \mathrm{td}, J=13.0$ and $11.5 \mathrm{~Hz}, \mathrm{H}-14), 2.43(1 \mathrm{H}, \mathrm{dr}, J=13.0$ and $3.5 \mathrm{~Hz}, \mathrm{H}-14), 2.67-2.73\left(3 \mathrm{H}, \mathrm{m}, \mathrm{H}_{2}-6, \mathrm{H}-20\right), 2.92(1 \mathrm{H}, \mathrm{ddd}, J=12.5,9.0$, and $6.5 \mathrm{~Hz}, \mathrm{H}-5), 3.20(1 \mathrm{H}$, $\mathrm{dd}, J=9.0$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 3.68\left(1 \mathrm{H}, \mathrm{dd}, J=12.0\right.$ and $\left.5.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 3.90(1 \mathrm{H}, \mathrm{dd}, J=12.0$ and 2.0 Hz , $\left.\mathrm{H}-6^{\prime}\right), 4.70\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.04(1 \mathrm{H}, \mathrm{dt}, J=12.5$ and $3.0 \mathrm{~Hz}, \mathrm{H}-5), 5.19(1 \mathrm{H}, \mathrm{dd}, J=10.5$ and $2.0 \mathrm{~Hz}, \mathrm{H}-18), 5.29(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and $2.0 \mathrm{~Hz}, \mathrm{H}-18), 5.50(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-21), 5.54(1 \mathrm{H}, \mathrm{dt}$, $J=17.0$ and $10.5 \mathrm{~Hz}, \mathrm{H}-19), 6.64(1 \mathrm{H}, \mathrm{dd}, J=8.5$ and $2.5 \mathrm{~Hz}, \mathrm{H}-11), 6.80(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-9), 7.12$ $(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-12), 7.44(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-17) ;{ }^{13} \mathrm{C}-\mathrm{nmr}$ data, see Table 3; sims $m / z[\mathrm{M}+\mathrm{H}]^{+}$ $515,353,187$; hrsims $m / z[\mathrm{M}+\mathrm{H}]^{+} 515.2027$ (calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{9}, 515.2031$); cd (MeOH) $\Delta \epsilon-14.58$ (237.5), -8.23 (271), +0.99 (310) nm.

ACETYLATION OF 5.-Conventional acetylation of methylisoalangiside [5] (2.8 mg) and subsequent purification by prep. tlc ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2$) afforded methylisoalangiside tetraacetate [14] $(1.9 \mathrm{mg})$ as a colorless amorphous powder: ${ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.57,1.96,2.01,2.09(12 \mathrm{H}$, each $\mathrm{s}, 4 \times \mathrm{Ac}), 1.99(1 \mathrm{H}$, ddd, $J=14.0,11.0$, and $5.0 \mathrm{~Hz}, \mathrm{H}-13), 2.22(1 \mathrm{H}$, ddd, $J=14.0,5.5$, and $4.0 \mathrm{~Hz}, \mathrm{H}-13), 2.62(1 \mathrm{H}$, ddd, $J=10.0,5.5$, and $1.5 \mathrm{~Hz}, \mathrm{H}-12), 2.64(1 \mathrm{H}$, ddd, $J=15.0,10.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-5), 2.75(1 \mathrm{H}$, quint. of d, $J=5.5$ and $2.5 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}$), $2.94-3.04(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6), 3.71\left(1 \mathrm{H}, \mathrm{ddd}, J=9.5,4.5\right.$, and $2.5 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), $3.85,3.90\left(6 \mathrm{H}\right.$, each s, $2 \times \mathrm{OMe}$), $4.12\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $\left.2.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.28(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and 4.5 $\left.\mathrm{Hz}, \mathrm{H}-6^{\prime}\right), 4.64(1 \mathrm{H}, \mathrm{brt}, J=4.5 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 4.84\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.90(1 \mathrm{H}$, $\mathrm{dd}, J=9.5$ and $8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), $5.05\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.18\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.27(1 \mathrm{H}, \mathrm{d}$, $J=1.5 \mathrm{~Hz}, \mathrm{H}-11), 5.32(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and $1.5 \mathrm{~Hz}, \mathrm{H}-15), 5.36(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and $1.5 \mathrm{~Hz}, \mathrm{H}-15), 5.64$ ($1 \mathrm{H}, \mathrm{dt}, J=17.0$ and $10.0 \mathrm{~Hz}, \mathrm{H}-14), 6.62(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.63(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.33(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-9)$; eims $m / z[\mathrm{M}]^{+} 687$ (15), 356 (7), 340 (12), 331 (23), 286 (20), 192 (12), 169 (100), 109 (53).

Preparation of 11 and 15 from 13 and dopamine.-A solution of secologanin [13] (1 g) and dopamine. $\mathrm{HCl}(0.5 \mathrm{~g}$) in citrate-phosphate buffer ($15 \mathrm{ml}, \mathrm{pH} 5.0$) was incubated for 3.5 days at room temperature. The reaction mixture was rinsed with $\mathrm{ErOAc}(\times 3)$, and the aqueous layer was made basic with 10% aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$ solution (2.0 ml) and stirred for 3 h at room temperature. The reaction mixture was extracted successively with EtOAc and n-BuOH. The combined n-BuOH layers were evaporated in vacuo and the resulting residue was then redissolved in MeOH . After removal of the precipitate by filtration, the filtrate was evaporated in vacuo and purified with prep. tlc ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 7: 3$) and prep. hple (μ Bondasphere $5 \mathrm{C}_{18}-100 \AA, \mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 45: 55$) to yield demethylalangiside $[11\}(224.9 \mathrm{mg}$) and demethylisolangiside [15] (33.5 mg).

Demethylalangiside [11].-Colorless needles ($\mathrm{H}_{2} \mathrm{O}$): $\mathrm{mp} 182-184^{\circ} ;[\alpha]^{21} \mathrm{D}-78^{\circ}(c=1.0, \mathrm{MeOH}) ;{ }^{1} \mathrm{H}-$ nmr data, see Table 1; ${ }^{13} \mathrm{C}$-nmr data, see Table 2; $\mathrm{cd}(\mathrm{MeOH}) \Delta \epsilon-12.80(242) \mathrm{nm}$.

Demethylisoalangiside [15].-Colorless needies ($\mathrm{H}_{2} \mathrm{O}$): mp 177-179$;[\alpha]^{24} \mathrm{D}-166^{\circ}(c=0.71, \mathrm{MeOH})$; $\mathrm{uv}(\mathrm{MeOH}) \lambda \max (\log \mathrm{E}) 233.5(4.29), 287.5(3.70) \mathrm{nm}$; ir (KBr) $v \max 3387,1649,1583,901 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}-$ nmr data, see Table $1 ;{ }^{13} \mathrm{C}$-nmr data, see Table 2 ; sims $m / z[\mathrm{M}+\mathrm{H}]^{+} 492,330,164$; hrsims $m / z[\mathrm{M}+\mathrm{H}]^{+}$ 492.1866 (calcd for $\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{NO}_{10}, 492.1871$); cd (MeOH) $\Delta \epsilon-7.60$ (226), -0.39 (250), -0.16 (292) nm.

ACETMATION OF 15.-Demethylisoalangiside [15$](9.0 \mathrm{mg})$ was acetylated and purified by prep. tlc ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 98: 2$) to afford demethylisoalangiside hexaacetate [16] (10.5 mg) as a colorless amorphous powder: $[\alpha]^{24} \mathrm{D}-159^{\circ}\left(c=1.05, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \operatorname{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.61,1.96,2.01,2.09,2.27,2.31(18 \mathrm{H}$, each $\mathrm{s}, 6 \times \mathrm{Ac}), 2.00(1 \mathrm{H}$, ddd, $J=14.0,11.5$, and $5.0 \mathrm{~Hz}, \mathrm{H}-13), 2.22(1 \mathrm{H}, \mathrm{dr}, J=14.0$ and $4.5 \mathrm{~Hz}, \mathrm{H}-13), 2.62$ ($1 \mathrm{H}, \mathrm{ddd}, J=10.0,5.5$, and $1.5 \mathrm{~Hz}, \mathrm{H}-12$), $2.70-2.77(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-12 \mathrm{a}), 3.01(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-6), 3.71$ ($1 \mathrm{H}, \mathrm{ddd}, J=10.0,4.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$) , $4.12\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.26(1 \mathrm{H}, \mathrm{dd}, J=12.5$ and $\left.4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.67(1 \mathrm{H}, \mathrm{brt}, J=4.5 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 4.75(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-6), 4.83\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right)$, $4.90\left(1 \mathrm{H}, \mathrm{dd}, J=9.5\right.$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.03\left(1 \mathrm{H}, \mathrm{brt}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.18\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right)$, $5.26(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}, \mathrm{H}-11), 5.32(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and $1.5 \mathrm{~Hz}, \mathrm{H}-15), 5.35(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and 1.5
$\mathrm{Hz}, \mathrm{H}-15), 5.60\left(1 \mathrm{H}, \mathrm{dt}_{, ~} J=17.0\right.$ and $\left.10.0 \mathrm{~Hz}, \mathrm{H}-14\right), 7.00,7.01(2 \mathrm{H}$, each $, \mathrm{H}-1, \mathrm{H}-4), 7.34(1 \mathrm{H}, \mathrm{d}, J=2.5$ $\mathrm{Hz}, \mathrm{H}-9$).

Methylation of 11 and 15.-A solution of $\mathbf{1 1}\left(20 \mathrm{mg}\right.$) in MeOH (3 ml) was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2} /$ $\mathrm{Et}_{2} \mathrm{O}$ and kept for 5 h . The reaction mixture was concentrated in vacuo, and the resulting residue was subjecred to prep. tic ($\mathrm{CHCl}_{3}-\mathrm{MeOH}, 8: 2$), giving rise to $\mathbf{1 2}(20 \mathrm{mg})$ as colorless needles $\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}\right)$, $\mathrm{mp} 167-169^{\circ}$. The product was identified as methylalangiside prepared from natural alangiside [3] [uv, ir, ${ }^{1} \mathrm{H} \mathrm{nmr}$, sims, $[\alpha]^{23} \mathrm{D}-67^{\circ}(c=0.8, \mathrm{MeOH})$, cd (MeOH) $\left.\Delta \epsilon-15.10(238) \mathrm{nm}\right]$. In a similar manner, demethylisoalangiside [$\mathbf{1 5]}$ (10 mg) was methylated and purifed by prep. hplc (μ Bondasphere $5 \mathrm{C}_{18}$-100 \AA, $\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}, 1: 1$) to afford methylisoalangiside (7.6 mg), which was identical to the isolated compound [5] [uv, ir, ${ }^{1} \mathrm{H} \mathrm{nmr}$, sims, $[\alpha]^{24} \mathrm{D}-158^{\circ}(c=0.5, \mathrm{MeOH}), \mathrm{cd}(\mathrm{MeOH}) \Delta \epsilon-9.72$ (224), +2.47 (242), -0.77 (255), +0.07 (274) nml. Methylisoalangiside (5.2 mg) was acetylated to afford methylisoalangside tetraacetate (6.9 mg), which was identical with $\mathbf{1 4}$ prepared from the isolate $5\left[{ }^{1} \mathrm{H} \mathrm{nmr}\right]$.

ACETYLATION OF 6.-Isoalangiside [6] (4.5 mg) was acetylated in the usual way and the crude acetate (3.6 mg) was purified with prep. tlc ($\mathrm{ErOAc}-\mathrm{C}_{6} \mathrm{H}_{6}, 2: 1$) to give isoalangiside pentaacetate [17] (3.1 mg) as a colorless amorphous powder: $[\alpha]^{26} \mathrm{D}-126^{\circ}\left(c=0.5, \mathrm{CHCl}_{3}\right)$; uv $(\mathrm{MeOH}) \lambda \max (\log \epsilon) 230(4.25), 275$ (sh, 3.57), $286(\mathrm{sh}, 3.39) \mathrm{nm} ;$ ir $\left(\mathrm{CHCl}_{3}\right) \nu \max 1757,1661,1603,1512 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \mathbf{8} 1.64,1.96$, $2.01,2.09,2.33(15 \mathrm{H}$, each s, $5 \times \mathrm{Ac}), 1.96(1 \mathrm{H}, \mathrm{m}, \mathrm{H}-13), 2.18(1 \mathrm{H}, \mathrm{dt}, J=14.0$ and $4.5 \mathrm{~Hz}, \mathrm{H}-13), 2.61$ (1 H, ddd, $J=10.0,5.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-12$), $2.71(2 \mathrm{H}, \mathrm{m}, \mathrm{H}-5, \mathrm{H}-12 \mathrm{a}), 2.97(1 \mathrm{H}, \mathrm{td}, J=12.0$ and 3.5 Hz , H-6), $3.04(1 \mathrm{H}, \mathrm{ddd}, J=15.5,12.0$, and $5.5 \mathrm{~Hz}, \mathrm{H}-5), 3.71$ (1 H , ddd, $J=9.5,4.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-5^{\prime}$), 3.80 ($3 \mathrm{H}, \mathrm{s}, \mathrm{OMe}$), $4.12\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}$) $4.26\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $\left.4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.64(1 \mathrm{H}$, $\mathrm{brt}, J=4.5 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 4.76(1 \mathrm{H}, \mathrm{ddd}, J=12.0,5.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-6), 4.84\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 4.89$ $\left(1 \mathrm{H}, \mathrm{dd}, J=9.5\right.$ and $\left.8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.04\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.18\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.24(1 \mathrm{H}$, $\mathrm{d}, J=2.0 \mathrm{~Hz}, \mathrm{H}-11), 5.31(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and $2.0 \mathrm{~Hz}, \mathrm{H}-15), 5.34(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and $2.0 \mathrm{~Hz}, \mathrm{H}-15)$, $5.61(1 \mathrm{H}, \mathrm{dr}, J=17.0$ and $10.0 \mathrm{~Hz}, \mathrm{H}-14), 6.72(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 7.32(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}$, H-9); eims $m / z[\mathrm{M}]^{+} 715$ (18), 673 (16), 384 (9), 368 (13), 331 (56), 314 (18), 169 (100), 109 (20); hreims $\mathrm{m} / \mathrm{z}[\mathrm{M}]^{+} 715.2477$ (calcd for $\mathrm{C}_{3} \mathrm{H}_{41} \mathrm{NO}_{15}, 715.2478$).

ACETYLATIONOF 7.-3-0-Demethyl-2-0-mechylisoalangiside [7](5.5 mg) was acerylated in the usual way and the crude acetate (8.0 mg) was subjected to prep. thc ($\mathrm{ErOAc}_{\mathrm{C}} \mathrm{C}_{6} \mathrm{H}_{6}, 2: 1$), giving rise to $3-0$ -demethyl-2-0-methylisoalangiside pentaacetate $[18](6.3 \mathrm{mg})$ as a colorless amorphous powder: $[\alpha]^{28} \mathrm{D}$ $-149^{\circ}\left({ }_{(}=0.63, \mathrm{CHCl}_{3}\right)$;uv (MeOH) $\lambda \max (\log \mathrm{\epsilon}) 229(4.27), 278(\mathrm{sh}, 3.62), 286(\mathrm{sh}, 3.51) \mathrm{nm} ;$ ir $\left(\mathrm{CHCl}_{3}\right)$ $\nu \max 1755,1661,1597,1510 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}\left(\mathrm{CDCl}_{3}\right) \delta 1.52,1.96,2.01,2.09,2.30(15 \mathrm{H}$, each s, $5 \times \mathrm{Ac})$, $2.03(1 \mathrm{H}, \operatorname{ddd}, J=14.0,12.0$, and $5.0 \mathrm{~Hz}, \mathrm{H}-13), 2.27(1 \mathrm{H}, \mathrm{ddd}, J=14.0,5.0$, and $4.0 \mathrm{~Hz}, \mathrm{H}-13), 2.63$ ($1 \mathrm{H}, \mathrm{ddd}, J=10.0,5.5$, and $1.5 \mathrm{~Hz}, \mathrm{H}-12$), $2.67(1 \mathrm{H}$, ddd, $J=15.5,3.5$, and $2.5 \mathrm{~Hz}, \mathrm{H}-5$) 2.78 (1 H , dddd, $J=12.0,5.5,5.0$, and $2.5 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}), 2.98(1 \mathrm{H}, \operatorname{ddd}, J=15.5,11.5$, and $6.0 \mathrm{~Hz}, \mathrm{H}-5), 3.01(1 \mathrm{H}$, td, $J=11.5$ and $3.5 \mathrm{~Hz}, \mathrm{H}-6), 3.72\left(1 \mathrm{H}, \mathrm{ddd}, J=9.5,4.5\right.$, and $\left.2.0 \mathrm{~Hz}, \mathrm{H}-5{ }^{\prime}\right), 3.87(3 \mathrm{H}, \mathrm{s}, \mathrm{OMe})$, $4.12(1 \mathrm{H}$, dd, $J=12.5$ and $\left.2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.28\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $\left.4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.66(1 \mathrm{H}, \mathrm{br} \mathrm{t}, J=4.5 \mathrm{~Hz}, \mathrm{H}-$ 13a), 4.71 ($1 \mathrm{H}, \mathrm{ddd}, J=11.5,6.0$, and $2.5 \mathrm{~Hz}, \mathrm{H}-6$), $4.82\left(1 \mathrm{H}, \mathrm{d}, J=8.0 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right.$), $4.91(1 \mathrm{H}, \mathrm{dd}, J=9.5$ and $8.0 \mathrm{~Hz}, \mathrm{H}-2^{\prime}$), $5.04\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.18\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.28(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$, $\mathrm{H}-11), 5.33(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and $1.5 \mathrm{~Hz}, \mathrm{H}-15), 5.36(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and $1.5 \mathrm{~Hz}, \mathrm{H}-15), 5.63(1 \mathrm{H}, \mathrm{dt}$, $J=17.0$ and $10.0 \mathrm{~Hz}, \mathrm{H}-14), 6.73(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-1), 6.83(1 \mathrm{H}, \mathrm{s}, \mathrm{H}-4), 7.35(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-9)$; eims m / z $[\mathrm{M}]^{+} 715(71), 673(22), 384(7), 368(14), 331$ (57), 314 (12), 169 (100), 109 (19); hreims $m / z[M]^{+}$ 715.2471 (calcd for $\mathrm{C}_{3}, \mathrm{H}_{41} \mathrm{NO}_{15}, 715.2478$).

ACETYLATIONOF 8.-DemerhyIneoalangiside [8] (19.4 mg) was acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine and the crude acetare (30.0 mg) was purified by prep. tic with $\mathrm{CHCl}_{3}-\mathrm{MeOH}$ ($98: 2$) toafford demethylneoalangiside hexaacetate [19] (15.3 mg) as a colorless amorphous powder: $[\alpha]^{27} \mathrm{D}-7.1^{\circ}\left(c=0.96, \mathrm{CHCl}_{3}\right.$); uv (MeOH) $\lambda \max (\log \epsilon) 223(\operatorname{sh}, 4.24), 237(4.26) \mathrm{nm} ;$ ir $\left(\mathrm{CHCl}_{3}\right) \nu \max 1762,1662,1598,1494 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{nmr}$ $\left(\mathrm{CDCl}_{3}\right) \delta 1.34\left(1 \mathrm{H}, \mathrm{td}_{J} J=13.0\right.$ and $\left.11.0 \mathrm{~Hz}, \mathrm{H}-13\right), 1.97,2.01,2.04,2.10,2.28,2.38(18 \mathrm{H}$, each s, $6 \times \mathrm{Ac})$, $2.25(1 \mathrm{H}$, ddd $, J=13.0,4.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-13), 2.66(1 \mathrm{H}, \mathrm{ddd}, J=10.0,5.5$, and $2.0 \mathrm{~Hz}, \mathrm{H}-12), 2.68(1 \mathrm{H}$, td, $J=12.5$ and $2.0 \mathrm{~Hz}, \mathrm{H}-6), 2.72(1 \mathrm{H}, \mathrm{dt}, J=15.5$ and $2.0 \mathrm{~Hz}, \mathrm{H}-5), 2.83(1 \mathrm{H}, \mathrm{ddd}, J=15.5,12.5$, and $4.0 \mathrm{~Hz}, \mathrm{H}-5), 2.90(1 \mathrm{H}, \mathrm{dddd}, J=13.0,5.5,4.5$, and $2.5 \mathrm{~Hz}, \mathrm{H}-12 \mathrm{a}$), 3.77 ($1 \mathrm{H}, \mathrm{ddd}, J=9.5,4.5$, and 2.0 $\left.\mathrm{Hz}, \mathrm{H}-5^{\prime}\right), 4.14\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $\left.2.0 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.33\left(1 \mathrm{H}, \mathrm{dd}, J=12.5\right.$ and $\left.4.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime}\right), 4.71(1 \mathrm{H}$, br d, $J=11.0 \mathrm{~Hz}, \mathrm{H}-13 \mathrm{a}), 4.94\left(1 \mathrm{H}, \mathrm{d}, J=8.5 \mathrm{~Hz}, \mathrm{H}-1^{\prime}\right), 5.01(1 \mathrm{H}, \mathrm{ddd}, J=12.5,4.0$, and $2.0 \mathrm{~Hz}, \mathrm{H}-6$), $5.04\left(1 \mathrm{H}, \mathrm{dd}, J=9.5\right.$ and $\left.8.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime}\right), 5.10\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-4^{\prime}\right), 5.17(1 \mathrm{H}, \mathrm{dd}, J=10.0$ and 1.5 Hz , $\mathrm{H}-15), 5.22(1 \mathrm{H}, \mathrm{dd}, J=17.0$ and $1.5 \mathrm{~Hz}, \mathrm{H}-15), 5.26\left(1 \mathrm{H}, \mathrm{t}, J=9.5 \mathrm{~Hz}, \mathrm{H}-3^{\prime}\right), 5.30(1 \mathrm{H}, \mathrm{d}, J=2.0 \mathrm{~Hz}$, $\mathrm{H}-11), 5.44(1 \mathrm{H}, \mathrm{dt}, J=17.0$ and $10.0 \mathrm{~Hz}, \mathrm{H}-14), 7.07(2 \mathrm{H}, \mathrm{s}, \mathrm{H}-3, \mathrm{H}-4), 7.49(1 \mathrm{H}, \mathrm{d}, J=2.5 \mathrm{~Hz}, \mathrm{H}-9)$; hrsims $m / z\left[\mathrm{M}+\mathrm{H}^{+} 744.2505\right.$ (calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{NO}_{16}, 744.2505$); cd (MeOH) $\Delta \epsilon-12.62$ (238), -0.38 (282) nm; $\mathrm{cd}(\mathrm{E}$ (OH) $\Delta \epsilon-12.97$ (237) nm.

ACKNOWLEDGMENTS

The excellent technical assistance of H. Uno, A. Obata, K. Takatani, and N. Yamamoto is acknowledged. Thanks are also due to Dr. M. Sugiura, Kobe Pharmaceutical University, for the ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}$ nmr spectra, and to Dr. K. Saiki, Kobe Pharmaceutical University, for mass spectral measurements.

LITERATURE CITED

1. A. Itoh, T. Tanahashi, and N. Nagakura, Chem. Pbarm. Bull., 42, 2208 (1994).
2. T. Fujii and M. Ohba, in: "The Alkaloids." Ed. by A. Brossi, Academic Press, New York, 1983, Vol. 22, Chapter 1, pp. 1-50.
3. A. Shoeb, K. Raj, R.S. Kapil, and S.P. Popli, J. Chem. Soc., Perkin Trans. I, 1245 (1975).
4. A. Itoh, T. Tanahashi, and N. Nagakura, Pbytochemistry, 30, 3117 (1991).
5. A. Itoh, T. Tanahashi, N. Nagakura, and H. Nayeshiro, Pbytochemistry, 36, 383 (1994).
6. H. Inouye, S. Ueda, and Y. Nakamura, Tetrabedron Lett., 5229 (1966).
7. H. Otsuka, Y. Takeda, and K. Yamasaki, Pbytochemistry, 29, 3681 (1990).
8. G. Höfle, N. Nagakura, and M.H. Zenk, Chem. Ber., 113, 566 (1980).
9. C.A.J. Erdelmeier, A.D. Wright, J. Orjala, B. Baumgartner, T. Rali, and O. Sticher, Planta Med., 57, 149 (1991).
10. P. Brauchli, V. Deulofeu, H. Budzikiewicz, and C. Djerassi, J. Am. Chem. Soc., 86, 1895 (1964).
11. R.T. Brown and W.P. Blackstock, Tetrabedron Lett., 3063 (1972).
12. N. Nagakura, G. Höfle, D. Coggiola, and M.H. Zenk, Planta Med., 34, 381 (1978).
13. A. Itoh, T. Tanahashi, and N. Nagakura, Phytochemistry, 31, 1037 (1992).
14. E. Ali, R.R. Sinha, B. Achari, and S.C. Pakrashi, Heterocycles, 19, 2301 (1982).

Received 11 April 1995

[^0]: ${ }^{1}$ A part of this work was reported in a preliminary communication (1).

